Paper Reference(s) 4PH1/1P 4SD0/1P Pearson Edexcel International GCSE (9–1)

Physics	3	
Science ((Double Award)	4SD0

PAPER: 1P

Total Marks

Time: 2 hours plus your additional time allowance

In the boxes below, write your name, centre number and candidate number.

Surname				
Other names				
Centre Number				
Candidate Number		1		

YOU MUST HAVE

Ruler, protractor, calculator

YOU WILL BE GIVEN

Formulae Booklet, Diagram Booklet

INSTRUCTIONS

Answer ALL questions.

Answer the questions in the spaces provided – there may be more space than you need.

Show all the steps in any calculations and state the units.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \bowtie and then mark your new answer with a cross \boxtimes .

INFORMATION

The total mark for this paper is 110.

The marks for EACH question are shown in brackets – use this as a guide as to how much time to spend on each question.

ADVICE

Read each question carefully before you start to answer it.

Write your answers neatly and in good English.

Try to answer every question.

Check your answers if you have time at the end.

Answer ALL questions.

- 1 The motion of an object can be represented using graphs.
 - (a) Look at the graphs for Question 1(a) in the Diagram Booklet. The graphs, P, Q, R and S, show different types of motion.

The table lists some types of motion.

Place one tick (\checkmark) in each row of the table to show which graph represents which type of motion. (4 marks)

Tune of metion	Graph						
Type of motion	Р	Q	R	S			
constant acceleration							
increasing acceleration							
moving at constant velocity							
stationary							

4	4!	_
	continue	
	COILLIAG	ч.

(b) State the feature of a velocity-time graph that can be used to determine the distance travelled by an object.(1 mark)

(Total for Question 1 = 5 marks)

2	This question is about electric current.							
	(a)	State what is meant by the term ELECTRIC CURRENT. (1 mark)						
	(b)	Give the name of the particles that flow if there is an electric current in a wire. (1 mark)						
(co	ntin	ued on the next page)						

- 2 continued.
 - (c) An electric heater contains wires that heat up when there is a current in the wires.

The electric heater has a power of 1-4kW when connected to a mains voltage of 230 V.

(i) State the formula linking power, current and voltage.(1 mark)

^		4 .		
7	COL	TIIN	ued	
	COL			п

(ii) Calculate the current in the wires. (3 marks)

current = _____ A

(iii)	Explain why the	current in th	ne wires	causes
	the temperature of	of the wires	to incre	ase.

(Total for Question 2 = 8 marks)

(2 marks)

2

continued.

3	Look at the diagram for Question 3 in the Diagram Booklet. It shows a torch that uses a rechargeable battery.									
		battery is recharged by shaking the torch up down.								
	(a)	Shaking the torch causes the magnet to move up and down inside the coil of wire.								
		Explain why the movement of the magnet causes a current in the coil. (3 marks)								
(co	ntin	ued on the next page)								

cor	ntinued.
(b)	Using a stronger magnet could increase the current in the coil of wire.
	State two other factors that could increase the current in the coil. (2 marks)
tal fo	or Question 3 = 5 marks)
	(b)

4 Cobalt-60 is a radioactive isotope of cobalt.

The table gives the activity of a sample of cobalt-60 over a period of 10 years.

Time in years	Activity
0	8000
2	6350
4	4900
6	3800
8	2900
10	2100

(a) Give a suitable unit for activity.(1 mark)

((b)	Look	at the	graph	for	Question	4(b)	in	the	Diag	ram

(i) Label both axes.

Booklet. It shows the data.

(1 mark)

4 continued.

(ii) Draw the curve of best fit. (1 mark)

(iii) Use the graph to determine the half-life of cobalt-60.(2 marks)

half-life = _____ years

- 4 continued.
 - (iv) Estimate the time taken for the activity to decrease to $\frac{1}{8}$ of its initial value. (2 marks)

time = _____ years

4	continued.		

(c)	Cobalt-60 is produced when a neutron is absorbed
	by the nucleus of a stable atom of cobalt-59.

The nuclei of these two isotopes can be represented as

60 27Co 59 27Co

Describe a similarity and a difference for the nuclei of these two isotopes of cobalt.

(2 marks)

4	continued.				
	(d)	Cobalt-60 decays by beta emission.			
		Describe what happens to the nucleus of a cobalt-60 atom during beta decay. (2 marks)			
(60	ntinı	ued on the next page)			

4	cor	ntinued.
	(e)	Cobalt-60 also emits gamma radiation.
		Cobalt-60 is produced in a nuclear reactor.
		Discuss the hazards involved and the precautions taken when disposing of cobalt-60. (4 marks)

4	continued.
(Tc	tal for Question 4 = 15 marks)

5	A student uses a balance to measure the mass of an object.			
	This is the student's method.			
	 adjust the balance so that it displays a reading of zero 			
	 place the object on the balance and record the reading 			
	The student repeats this measurement several times.			
	(a) What is improved by adjusting the balance to give a reading of zero before the object is placed on it? (1 mark)			
	A accuracy of the measurement			
	B precision of the measurement			
	C reliability of the measurement			
	D validity of the measurement			
(co	ontinued on the next page)			

5	continuea.				
	(b) What is improved by repeating the measurement (1 mark)				
	□ A	accuracy of the measurement			
	□В	precision of the measurement			
	С	reliability of the measurement			
	D	validity of the measurement			
(cc	ontinued	on the next page)			

		4 .		
5	con	tin		\mathbf{C}
J	COLL	LIII	uc	u.

(c) The student measures the mass of the object using six different balances.

Look at the table for Question 5(c) in the Diagram Booklet. It shows the student's results.

- (i) Draw a circle around the anomalous reading in the table.(1 mark)
- (ii) Calculate the mean mass of the object. (3 marks)

mean mass = _____g

		4 .		
h	2	nti	nII	ed.
J	CU		HU	GU.

(iii) State what other measurement the student would need to make to determine the density of the object.

(1 mark)

(Total for Question 5 = 7 marks)

6	and	tudent uses equipment including a glass block a pencil in an experiment to determine the ractive index of the glass block.
	(a)	The student places the glass block on a piece of paper and draws round the block with a pencil.
		Name two additional pieces of equipment the student will need for his experiment. (2 marks)
1 _		
2		

^	4	
h	CONTINUE	
6	continued	١.

(b)	Look at the diagram for Question 6(b) in the
	Diagram Booklet. It shows the path of a ray of
	light as it travels towards and then through the
	glass block.

- (i) Draw the path of the ray of light when it leaves the glass block.(2 marks)
- (ii) Draw the normal line at the point where the ray of light enters the glass block.

 (1 mark)
- (iii) Determine the angle of incidence and the angle of refraction at the point where the ray of light enters the glass block.

 (2 marks)

angle of incidence =	
angle of refraction =	

(continued on the next page)

0

_		
6	continued	ı
U	Continued	

(iv)	State the formula linking refractive index,
	angle of incidence and angle of refraction.
	(1 mark)

(v) Calculate the refractive index of the glass block.(2 marks)

refractive index =

		4 =	
h	CON	tin	ued.
U	CUI		ucu.

(c) A teacher suggests that a more accurate value for the refractive index can be found using a graphical method.

Design a method to obtain a value for the refractive index of the glass block using a graph.

You may draw a diagram to support your answer. (3 marks)

6	continued.
(To	tal for Question 6 = 13 marks)

7	Look at the diagram for Question 7 in the Diagram Booklet. It shows the construction of a simple loudspeaker.
	A coil of wire is wrapped around a paper tube attached to the loudspeaker cone.
	When there is an alternating current (a.c.) in the coil, the cone moves.
	Explain how the loudspeaker produces a sound wave. (5 marks)
(co	ontinued on the next page)

continued.			

- 8 Callisto is a moon of the planet Jupiter.
 - (a) In the space below, draw a labelled diagram to show how Callisto orbits Jupiter.(2 marks)

lacksquare			
×	COL	NTIM	
	GUI		ued.

(b) Callisto orbits Jupiter at an orbital radius of 1880 000 km and with an orbital period of 400 hours.

Calculate the orbital speed of Callisto in km/s. (4 marks)

Give your answer to 3 significant figures.

orbital speed = _____ km/s

0	COI	itinuea.
	(c)	Callisto has a gravitational field strength of 1.2 N/kg at its surface.
		The Earth's moon has a gravitational field strength of 1-6 N/kg at its surface.
		(i) Callisto has a larger mass than the Earth's moon.
		Suggest why Callisto has a lower gravitational field strength than the Earth's moon. (1 mark)
(co	ntin	ued on the next page)

^	4.	
8	continue	
O	COHLING	JI i

(ii) An object has a weight of 59 N on the surface of the Earth's moon.

Calculate the weight of the same object if it were on the surface of Callisto.
(3 marks)

weight = _____N

(Total for Question 8 = 10 marks)

- 9 This question is about gas pressure.
 - (a) Propane gas is stored in a cylinder at a pressure of 1.03×10^6 Pa.
 - (i) State the formula linking pressure, force and area.(1 mark)

	4.0	
a	continued	
J	COILLIIGE	

(ii) The cylinder has an internal surface area of 1.13 m².

Calculate the force exerted on the walls of the cylinder by the propane gas.
(3 marks)

force	_	N.
force		IN .

9	continued.
	(iii) Explain why the pressure exerted by the propane gas acts equally in all directions. (2 marks)
(cc	ntinued on the next page)

9	continued.						
	(b)	Look at the graph for Question 9(b) in the Diagram Booklet. It shows how the pressure of a gas varies with its temperature.					
		(i)	Describe how the graph can be used to show that there is a minimum value of temperature, known as absolute zero. (2 marks)				
		(ii)	Give the value of absolute zero in °C. (1 mark)				
			absolute zero = °C				
(co	ntin	ued	on the next page)				

Turn over

- 9 continued.
 - (iii) Temperature can also be measured in kelvin.

Look at the diagram for Question 9(b)(iii) in the Diagram Booklet. On the axes, sketch a graph to show how the pressure of a gas varies with its kelvin temperature. (2 marks)

(Total for Question 9 = 11 marks)

10 Look at the diagram for Question 10 in the Diagram Booklet. A student uses this apparatus to investigate the stretching of a rubber band.

This is the student's method.

- attach the 12 cm long rubber band to a clamp stand
- hang a 1N weight from the other end of the rubber band
- determine the extension of the rubber band

The student repeats this method, increasing the weight by 1N each time until the weight is 10N.

(a)	Describe how the student could determine the
	extension of the rubber band.
	(3 marks)

10	continued.	
(co	ontinued on the next page)	

10	(b) Look at the graph for Question 10(b) in the Diagram Booklet. It shows the student's results.		
		(i)	Explain how the graph shows that the rubber band does not obey Hooke's Law. (2 marks)

4		4 *	
7	0	continued	
	U	COILLIIGEA	

(ii) The area under the curve on the graph is equal to the increase in the rubber band's elastic energy store.

Estimate the increase in the rubber band's elastic energy store when the rubber band has been extended by 20 cm.

(4 marks)

increase	= .
IIIOI CUSC	•

(Total for Question 10 = 9 marks)

- 11 Look at the diagram for Question 11 in the Diagram Booklet. It shows a circuit that includes a battery, an ammeter, a voltmeter and three different resistors.
 - (a) (i) Give the voltmeter reading. (1 mark)

voltage	=	V

(ii) State the formula linking voltage, current and resistance.(1 mark)

11	cor	ntinu	ed.
		(iii)	Calculate the resistance of resistor X. (3 marks)
			resistance = Ω
	(b)	(i)	Give the reason why the reading on the ammeter would be 16 mA. (1 mark)

11	.	410		٦
		tin	ue	

(ii) Calculate the resistance of resistor Y. (4 marks)

resistance = Ω

11 continued.

(c) Resistor X and the voltmeter are removed from the circuit, leaving a break in this part of the circuit.
Explain how the current in the battery changes when these components are removed. (2 marks)
(Total for Question 11 = 12 marks)

12	Look at the diagram for Question 12 in the Diagram Booklet. It shows a building in a hot climate.				
	The air temperature is 35°C and the underground temperature is 12°C.				
	The external pipe is heated by the Sun. This causes cool air to enter the house through a tube in the ground.				
	(a) How is energy transferred to the external pipe from the Sun? (1 mark)				
	A conduction				
	B convection				
	C evaporation				
	D radiation				
(co	tinued on the next page)				

12	continued.						
	(b)	Explain why air moves upwards through the external pipe. (3 marks)					
(co	ntin	ued on the next page)					

12	continued.		
	(c)	Warm air enters the tube at point X.	
		Cool air leaves the tube at point Y.	
		Explain how the air is cooled as it travels through the tube. (3 marks)	
(co	ntin	ued on the next page)	

12	continued.			
	(d)	The external pipe is painted to increase the air flow through the building.		
		Explain what colour of paint would give the greatest increase in air flow. (3 marks)		
(To	tal fo	or Question 12 = 10 marks)		

TOTAL FOR PAPER = 110 MARKS END OF PAPER